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Partial derivatives
d _dy
) = x5+ y(1)
=)=y =y
a(x)’) =x(1) =x
g
a(x+y) =(1)+0=1
o
a—-(Sin(xy)) = Cos(xy) = (y * 1) = yCos(xy)
a—y(Sin(xy)) = Cos(xy) = (x * 1) = xCos(xy)
(7]
a5 ). = (7)) = y(e™)

a—y(e"”) = (™) (x) = x(e™)

6/21/2021 Dr. B. Krishnaveni PDVC



ADITYA ENGINEERING COLLEGE(A)

Partial derivatives

flx,y) =x— y* + 2xy

if(f) =2x + 2y
—(f) = -2y + 2x

ay
a’f a fof

a
— = — 2+ 2 = 2
adxz dx \ dox ﬂ:r{ * ¥)

azf a faf ad
= = —2y+ 2x) = -2
ay* ay (ﬂy ﬂy{ y + 2x)
o°f 9 (9of 7 (—2y+2x) =2
ﬂxﬂz}r - ax\ay/) ox 4 =
acf a faf a
dydx ﬂy(ﬂ.r) ﬂ_y{ ¥ x)

. @'y air
- dxdy o dydx
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Partlal leferential equation:

If an equationinvolvinga dependentvariablesand its derivatives with respect to two or more
independentvariablesthen the equationis said to be partial differential equation.
Example

\.x—+yay+t—— xyt

Here, Z is the dependent variable that depends on 3 variables x , y

, L.
X, YV, tare called the independent variables.
2 ]
.. *u N Fu _ 0
X 9y

2u Y 82u3
+(5¢) +[5¢) =
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ORDER:

The order of a partial differential equation if the
order of the highest partial derivative occurring in
the equation.

DEGREE:

The degree of a partial differential equation is the
greatest exponent of the highest order.

EmmaPLE- 5
Zz A
xa+y$+ ta xyt Order:1 Degree:1

2. (ijz)2 | ( )2— 2Z Order:2 Degree:2

3z

2 4 _
3. (a:3) (31;3) = 2Z Order:3 Degree:2
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NOTATIONS:

Throughout this chapter we use the following
notations; z will be taken as a dependent variable
which depends on two independent variables

X and y so that z = f(x; y).

We write

07z 07
0%z — r 0%z 0%z — - 0%z — ¢
dx2 ’ Axady dydx ’ ay2
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Formation of Partial Differential Equation :

1. Formation of partial differential equation by
elimination of arbitrary constants.

2. Formation of partial differential equation by
elimination of arbitrary functions
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elimination of arbitrary constants:

Let f(x; v; z; a; b) = O.
Be an equation which contains two arbitrary constants

a'and b’

Now, to eliminate these two constants, Partially
differentiating with respect to x' and y' we get two
more equations. Eliminating a and b from these three
equations, we get @(x; v; z; p; q) = O which is a partial
differential equation of order 1.
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INn this case the number of arbitrary constants to
be eliminated is equal to the number of
independent variables and we obtain a first order

partial differential equation.

If the number of arbitrary constants to be
eliminated is more than the number of
independent variables, we get partial differential
equations of second or higher order.
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2. Formation of partial differential equation by
elimination of arbitrary functions:

The elimination of one arbitrary function from
a given relation gives a partial differential
equation of first order while elimination of two
arbitrary function from a given relation gives a
second or higher order partial differential
equation.
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Formation of Partial Differential Equation

By eliminating of arbitrary constants

Problems
o . X y°
Form PDE by eliminating arbitrary constants from 2z = =2 " p2
Sol: we have,
X2 y2
27 = . : 52 > (1)

Differentiating (1) w.r.t to x and vy, we get

2 9% =2)2(:> P = X2 = a® = = — (2)
OX a a P
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2 _
2:>b —

substituting (2) &(3) in (1) we get

22=x2£—|—yZﬂ

X y
—> 27 = Xp + Yyq

which is our required PDE
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EXAMPLE:
2. Form the partial differential equation by eliminating the

ADITYA ENGINEERING COLLEGE(A)

arbitrary constants a and b from log(az-1)=x+ay+b

SOLUTION:
Given equation is log(az-1)=x+ay + b --—---- >(1)
Differentiating (1) w. r . To x,
( OZ) .
a =
(az—1) 0x
1
->(az_1) ap=1
ap=az-1 ————()
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" Differentiating (1) w.r. To y,
1 az Z).
(az — 1) a -
=>(a,z—l) 4q=a
q=az-1 ————(2)
Fromeq(2), ap=az-1
=>a p-az=-1
=>-1=a(p-z)

=>-1= tl(p z) (from (3))

=>-z=(q+1)(p-2z) S z2=(z-p)(q+D)
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3. Form the partial ditferential equation by eliminating a and b from
(x —a)?+(y — b)?= (2)?(Cot)?a,where a is a Constant

SOLUTION:

Given equationis (x — a)?+(y — b)?= (2)?(Cot)?a ------>(1)
Differentiating (1) w r to x,

2(x-a)=2zp (Cot)*a

=>(x-a)=z p (Cot)*a ----->(2)

Differentiating (1) wrtoy,

2(y-b)=2z q (Cot)?a

=>(y-b)=z q (Cot)?a------ >(3)
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From (1),(2) and (3),
(zp (Cot)?a)?+(z q (Cot)?a)?*= z?Cot?a

=>z?p?Cot*a + z?q*Cot*«
= 7%Cot*d

=> (p? + q%)Cot?*a=1
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EXAMPLE:

4. Form the partial differential equation by eliminating the arbitrary constants a and b
fromz = axe? —I—%azezi'" + b

SOLUTION:

Given Differential equation is z = axe? + %azezy + b - =>(1)
Differentiating (1) w r to x,
We get p= ae¥ -————- >(2)
Differentiating (1) w r to v,
We get q= axe? + %EEEE}'Z
= axeY + a%e=¥Y
==g=x(ae¥)+({ae?¥ )=
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5. Form the partial differential equation of all spheres whose radii are the same.
SOLUTION : Let us consider a sphere equation with centre(a, b, c) and radius “r” units.
(x —a)*+(y — b)*+(z — ¢)*= (R)*-—>(1)
Differentiating e g (1) w r to x,
We get 2(x-a)+2(z-c)p=0
=>(x-a)+(z-c)p=0----->(2)
Differentiating (1) wrtoy,
We get 2(y-b)+2(z-¢c)g=0
=>(y-b)+(z-c)q=0----->(3)
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From (2), (x-a)+(z-c)p=0

Again differentiating (2) w r to x, We get
i

1+(z-c)£ +p(p-0)=0

1+(z-¢)r+ p%=0

=>(z-¢)r=-1- p?

=>{z-femte ()
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ADITYA ENGINEERING COLLEGE(A)

Dr. B. Krishnaveni PDVC



ADITYA ENGINEERING COLLEGE(A)

From (3), (y-b)+(z-c)g=0
Again differentiating (3) w r to y, We get

o
1+[z-c]§ +qg(g—0)=0
=>1+(z-c)t+ g%=0

=>1+ (_1_ pz) t + g2 = 0 (from (4))

T
=>r+(-1-p%)t+rg® =0
This is a second order partial differential equation.
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1. Find the differential equation of the sphere whose center lies on the z-
axis.

Solution: Let (a, b, c) is the center of the sphere.
Given that the center lies on Z-axis.
So, a=0and b=0.
. The equation of the Sphere is(x)?+(y)%+(z — ¢)?= (R)%--->(1)
leferentlatlng (1) w.r.to x,
We get 2 x+ 2(z- r::}( ) 0

_>x+(z—c)p—0-—->(2}
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Again differentiating (1) w.r.to v,

We get 2yv+2(z-c) g—i=0

=>y+(z-c)g=0 -—=>(3)
<~ From (2), (z-c)p=-X
==(z-c)=-x/p
==>-y/q=-x/p (from (3))
=¥y pP=Xq

6/21/2021 Dr. B. Krishnaveni PDVC



Aditya Engineering College(A)

Formation of PDE

By eliminating of arbitrary functions
Problems

1.Form PDE by eliminating arbitrary functions from z = T (%)
Sol: we have,

z = f(){) > (1)

Differentiating (1) w.r.t to x and vy, we get
O , O
=t (D=

OX X OX X

) = p = f'(){)(_xzy) > (2)
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e K e

y _ s YA
oy " ay(X):>GI—1°(X)(X) > (3)

(2) = (3) ,we get

P  —y/x® —vy

q 1/ X X

— pX+qy =0

which is our required PDE
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.Form a partial differential equation by eliminating f from
z = x2 4+ f(%+ log x)
SOLUTION:

|
R
N
.|.
p
-
0
09
%
S’
|
|
|
X
-

Given equation is =z

Differentiating (1) w r to x,
We get p=2x+ f! (%+lﬂgx) ({] + %)
=>p =2 X + {%] 1 (i —+ lngx)

=>P—2x=(2) ' (= +logx) - >(2)
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Differentiating (1) w r to v,
_ 1 (1 — 1
We getq=0+ f (y+lngx)( y2+0)

1 1
=>q = (—23) f! (5 + logx) - -3
@ _p-2x (@' (3+1osx)
) - o 1 1
(3) q {—F]ff(?+lngx)
=}p—2x__y_2
q x

=>(p-2 x) x =- q (¥?)
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Form PDE by eliminating arbitrary functions from
f(x°+y®,z—xy)=0

Sol: we have,
f(X°+vy®,z—xy)=0

e, f(xXZ+y?)=2z—xy

Differentiating (1) w.r.t to x and y, we get

f’(x2+y2)2x:%—y:> F/(X%+ y2)2X =p—Yy —> (2)
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f’(x2+y2)2y:E—x:> f'(x*+y?)2y =g— X — (3)

(2) = (3) ,we get
2X _ pP—Yy

>y - g_x
= gX— X =py—Yy°

= py —Qgx = y* —x*

which is our required PDE

6/21/2021 Dr. B. Krishnaveni
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Form PDE by eliminating arbitrary function f and g from

z=f(x+ay)+g(x-avy)
SOLUTION:
The given equationisz=f(x + ay) +g (x- ay) ---——>(1)

Differentiating (1) w r to x , We get

p=f'(x +ay) + g'(x —ay)--—-->(2)
Differentiating (1) w r to y, we get

q=f"(x+ay)a)+g'(x —ay)-a)
=>q=a(f'(x + ay)- g'(x —ay)) ---—--->(3)
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Again differentiating (2) w.g r to x, We geta
—i =fl'x+ay)+g"(x —ay)

0
=>r=fll(x+ay)+g"(x —ay)----—->4)

Again different'iaating (3) wrtoy, We get
% =af!(x+ay)(0+a)—a(g'(x —ay)(0—a))
=>t=a?(f"(x+ay)+ g'"(x —ay))--—--->(5)
From (4) & (5),

t=a?r

Dr. B. Krishnaveni PDVC
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Example 6: Form partial differential equations from the solutions

(i) z= fix) + & g(x)
(i) z= %[F(r- at) + F(r+ at)]

Solution: (i): Given z= fx) + ¢ g(x)
0
B_)Z/ = ¢ g(x)  Keeping g(x) as constant.

2
and a—; = ¢’ g(x) | (On differentiating again with respect to y)

0Z _ P’z
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(ii) Given z:l[ﬂr—at)+ﬂr+at)] (1)
% ;[F’(r at) —a+ F(r+af) - a .(2)
% = %[F”(r— at) + F"(r + at) | ...3)
% %[F’(r—at)+F’(r+at)]—%[Hr—ﬂt)+F(F+3t)] ()
0z IF’ F
5, ;[ (r—at)+ (r+at)]——
&z—[p”r at) + F'(r+ at)] - 1[ F(r—at)+ F(r+af)]
o r r?
_;[F’(r—at)+F'(r+at)]+%[HF—3t)+F(r+at)]
0’z

A[F’(r— at) + F(r + at)| +%[F(F—3f)+ F(r + at)|

_—1 4 J— ’ J—
= r[F (r—af) + F'(r + af)| -

or?
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On using (1), (3), (4) in (5), we get

azzz 1 822_2[%_‘_5}_‘_12
oY & d rlor r] P
dz 20z_ 1z aza(rgaz)_&. the desired b.d
o “ror 2oe O rPor\"or) og o O PES

i) Form partial differential equation from the relation z= fi(x + iy) + f,(x - iy).

Given z= fi(x+ iy) + L(x - iy) cenlol)
%z f (x+1iy) + & (x— iy) wenf2)
X
0z . ! o . o
— =if (x+1iy)—if, (x—iy) :l3)

dy
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2
Similarly g?z = ' (x+iy)+ £, (x—iy) ...(4)
azz . ]Q f” . Qf” .
?— . (x+iy)+1° £ (x—iy) ..(5)
d*z 9%z

=(0; where i# = -1

oK | oy
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ASSIGNMENT:

1. Form the PDE by eliminating the arbitrary constants from
(i) z=ax+ a?y?+b
(ii)ax+by+cz=1.
2. Form the PDE by eliminating the arbitrary function from
(i) z= f( x-y)
- X
(i) @ (xy + z2,%) =0
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Different Integrals of Partial Differential
Equation

1. Complete Integral (solution)

. >, oz
Let: X2 g )= F(x,yv,z,p.qg)=0...... D
ox oy

be the Partial Differential Equation.
The complete integral of equation (1) is given

by ¢(x9 y.<Z.d, b) — O .......... (2)
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2. Particular solution

A solution obtained by giving particular values to
the arbitrary constants in a complete integral is
called particular solution .

3.Singular solution

The eliminant of a , b between

P(x, y,z,a,b) =0
o4 _ 0. 2% _ o

Oct ob

when it exists , is called singular solution
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LINEAR AND NON-LINEAR PARTIAL DIFFERENTIAL EQUATION:

A differential equation which involves partial derivatives p and q only and no higher order

derivatives is called a first order partial differential equation.

If pand q have degree one, then the PDE is called a LINEAR pde.

If p and q have degree more than one , then the PDE is called a NON-LINEAR pde
Examples:

1. px+qy* =z Linear PDE

2 pq+qy=2zNon— Linear PDE

3. p?+4+q?*=1Non — Linear PDE

4. p=qg+xyLinear PDE
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Solution of Partial Differential Equation

Linear Partial Differential Equation of first order

Lagrange’s linear equation:
A Linear Partial Differential Equation of the form
Pp+Qqg=R
where P,Q,R are functions of x,y.z is called Lagrange’s linear equation
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To Solve Pp+Qa-=R:

1.Write the auxiliary or subsidiary equations

dx _dy _dz
P Q R

(a) Method of grouping:

In the subsidiary equations

P Q R
{dx=dyandd_y=E] Gr{dx=dzanddy=dz]
P Q Q R P R Q R

if the variables can be separated in any pair of equations,
then we get a

solution of the form u=a and v = b.

) . PDVC
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Then the general solution is given by
f(u,v)=0 or f(u)=v
(b) Method of multipliers:

Consider 9X _ dy _ dz

P Q R

ldentify the multipliers |,m,n not necessarily constants, each ratio

equals to
dx dy dz _ 1dx + mdy + ndz
P Q R IP + mQ + nR

Choose I,m,n So that IP+mQ+nR=0 then ldx+mdy+ndz=0
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On integrating we get,uU(X, y,z) = C;

Similarly ,by choosing another set of |,m,n we have another
independent solution v(x, y, z) = C,

Then the general solution is given by
f(u,v)=0 or f(u)=v
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1. Solvethe PDEpx+qvy=Z.
Sol:

Given PDEispx+qy =z -——>(1)
This is of the formp P +g Q=R
Here, P =x ; Q= vy and R=z.

Now Consider the subsidiary equations

21-06-2021 Dr.B.Krishnaveni PDVC
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S — L
a w z
ox of o dz
x w ¥ z

Integrating on both sides of these two equations
log x = logy + log c, and log y=logz + log c,
— logx—logy=logc,and logy —logz=Ilog c,
= log [i}l = log c, and log [f} = log c,

x ¥
= ($)=cand (J) =c;

- The solution is @ (I F) 0
V' Z
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dx dy  dz

X v Z
dx  dz dy  dz
x =z y =z

Integrating on both sides of these two equations

log x =log z + log c, and log y=log z + log c,

—>logx—logz=logc,and logy—logz=Ilogc,
X . E —

= log [z] = log ¢, and log {E} log ¢,

=(=)=c,and () = ¢,

] ] Xy
o~ The solutionis@(—,=) =0
z Z
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ADITYA ENGINEERING COLLEGE(A)
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2. Solve the PDEpx+qgvy=0.
Sol:

Given PDEispx+qgqy =0 -—-—>(1)
This isof theformpP+g Q=R
Here, P =x ; Q= vy and R=0.

Mow Consider the subsidiary equations
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T — E—
x W [
ot ol al az
x B . iy
[ ko ol

—
X »

Integrating on both sides of these two equations
logx =logy+ log c, and z=c,

— logx—logy=Ilogc, and z=c,

— log [f}l = log ¢, and z=c,

=N {i} = ¢, and z=c,

x
s~ The solution is @ (;.E ) =0
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dx dy  d=E

sy - —

x B i
dx _ d=z ,dy  dz
b — e

x i b i

— dz=0anddz=0
Integrating on both sides of these two equations

I=c,and Z=c,
~ The solution is @(z,z ) = 0, the solution cannot be like this
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2
3. Solve the PDE-J-’x—Z Pz gi= =
Sol:

2z

Given PDE is — y p+xzq= y?

Multiplying both sides with x, we get
Yo7 PEXEZE GEVEX —541)
This is of the from p P+ g Q = R.

Where P = y?z; Q= x%z and R= y?x

21-06-2021 Dr.B.Krishnaveni
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Now Consider the subsidiary equations

P Q R
. dx _ d v _ d=z
S y2z x2z yZx
dx o d d =
=TI, 23" and 2}': 2
Y=z X=Z X== yex
d x d y
= — and ., . o .
y2 x2 if = .r__',", which is impossible
d cd dx d
=% = Dana =22
y x yeoz yex
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d dy dx dz
y2 x2 yiz  ylx
—x?dx = y*dy and xdx = z dz

Integrating on both sides of these two equations
x3  y3 x? z

x3
3

¥y
3

|
R
]
-
el
ra | %
mllh‘
|l

2
The solution is @ (— - L.— - z—) =0

21-06-2021 Dr.B.Krishnaveni PDVC
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4.Solve the PDEp~/X + gy =~z

Sol: Given,

p\/;—I—CI\/Vz\/?

The auxiliary equations are

dx _dy _dz
P Q R

21-06-2021 Dr.B.Krishnaveni PDVC
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Consider, 9% _ dy
VX VY
On integrating ,we get
2~/ X =2y +C
— VX —JJY = C,
now consider, _dY dz
\V/ N Z

On integrating ,we get
2y =2~z +cC

21-06-2021 Dr.B.Krishnaveni PDVC
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Hence the general solutionis f (c,,c,) =0
l.e.

f (VX —JVY.Jy —~/z) =0 ,where fis arbitrary

21-06-2021 Dr.B.Krishnaveni PDVC
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5. Solve the PDE x2 p + y? q = z*

Sol:

The given PDEis x? p + y% q = z* —-—->(1)
The given PDE is of the formpP+qQ=R
Here,P=x%;Q=y? and R = z*

Now Consider the subsidiary equations
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dx dy dz
X2 y2 ~ g2
dx _ dy . E
roialw ancl }. =
= Integrating on both sides of these two equations we get
»2=24 Ciand == 2+,
X ¥ ¥ Z
—=—a=C and = — == (,
y X z Yy
o 1 11 1
~ The general solutionis@ (—— —,— — =] =10
y xz Yy
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6. Solve the PDE(a-x)p+(b-y)g=c—z
Sol:

The given PDEis(a-x)p+(b-y)Jg=c—z.
Thisisof thefromp P+g Q=R

Here, P= a-x ; Q = b-y and R=c-z.

Now Consider the subsidiary equations
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dx dy  dz

a-x b=y ¢~z

dx d _ dz
2 D) opgd

a-x b=y b -y T -z
= Integrating both sides of these two equations, we get

- log (a-x)=-log (b-y) + log C; and - log (b-y)=-log (c-z) + log C;
=>|og (b-y)-log(a-x)= log C; and log(c-z) - log(b-y)= log 5

=>log {E] =log C; and log {E] = log (;

. b=y c-z
*. The generral solution is @ , =0
a—x b—-y
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5.5olve the PDE ptan X +qtany = tan z

Sol: Given,
ptanx +qgtany =tanz

The auxiliary equations are

€., dx dy dz
tan X tan y tan z
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Consider
, _dx — dy —> cot xdx = cot ydy
tan X tan y

On integrating ,we get

logsin x =logsin y + logc,;

SN X SN X
—> log — = logc, — — = C;
siny siny
now consider, dy dz

= —> cot ydy = cot zdz
tan y tan z

On integrating ,we get
logsin y =logsinz +logc,
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siny
sin z

siny

— log sin z

= logc, —

Co

Hence the general solutionis f (c,,c,) =0

l.e ] _
SIN X SsiInNny

f (= y —
siny sinz

) = O where fis arbitrary
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3.Solve the PDE PX — QY = y2 — X°

Sol: Given,
2

pXx—qy =y — X

The auxiliary equations are
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Consider, dx  dy

X — Yy
On integrating ,we get

logx =—logy + logc,

—> log xy =logc, — Xy = cC,

Now taking I=x,m=y,n=1 as multipliers, we get
xdx + ydy +dz = xdx + ydy + dz

x2—y2—|—y2—x2 O

S.xdX +ydy +~dz =0
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X
-Y 4t z=c=x2+y2+2z=c,

2 2

Hence the general solution is T (C1,C3)

l.e.,
f (xy, X2 + y2 + 22z) = 0,where fis arbitrary
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.Solve the PDE xz(y —Z)p + yz(x —27)q = 22(X —VY)

Sol: Given,

X*(y—2)p+y (x—2)q=2"(X—Y)

The auxiliary equations are

e, A dy

dz

x2(y —z) vy (z—x) z°(X—y)

21-06-2021
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Now taking I=1,m=1,n=1 as multipliers, we get

)3'2 dx + ;'2 dy + 212 dz )3'2 dx + ;'2 dy + 212 dz
Y —Z+Z—X+X—Y - O
.°.i2dx—|— 12 dy—l—izdz =0
X \Y V4
: : 1 1 1
on Integrating, we get : : = C,

X Yy Z
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Also (1) can be written as

1
1 ax = dy 14z
X N4 - Z

x(y —z) y(z—x) z(Xx—y)

Now taking I=1,m=1,n=1 as multipliers, we get

idx—|—idy—|—ldz ldX—I—idy—l—idZ
X \Y Z _ X WY y4
XY — XZ + YZ — YX + zZX — zZy O

.°.£dx+idy+1dz =0
X \Y, Z
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on integrating, we get

logx+logy +logz =logc, = xyz =c,

Hence the general solution is T (C;,C;) =0

l.e.,

1 1 1 : :
f (—+ y - Xyz) = O ,where fis arbitrary

X
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EXAMPLE: 1. Solve (y-z)p+ (z-x)g=x-V.
Sol: Given equationis(y-z)p+ (z-X)g=x-.
Thisisoftheformp P+qg Q=R

Here P=vy-z, Q=z-xand R = x-y

Now Consider the subsidiary equations

P Q R
_ dx _ dy _ dz
B V—Z  z—x x—y
dx d d dz dx dz adz
=22 and =L = (or) = and —= =
vV—Z E—X Z—X x—=y YV—Z X—Yy Z—X x—y
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dx dy dz _ ldx+mdy+ndz
P Q R [P+FrmQ+nR

y-z)+ () (zx) + () (x-y) =0whatarel, m,n?
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v-z)+(1)(zx)+(1)(xvy)=y-z+z—xXx+x—y =0
So,(ILm,n)=(1,1,1)
(i)
X (y-z) +y (z-x) + z(x-y)
=XY—XZ+YZ—YX+ZX—2ZY
=0

So, (I, m,n)=(x,v, 2)
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dx day dz ldx+1dyv+1dz
P Q R 0

dx dy dz  xdx+ydy+zdz

P Q R 0
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NOTE:

Some times it is not possible to solve a Lagrange’s linear
equation by either Method grouping or Method
multipliers. In such cases we add / subtract the terms of

the subsidiary equation ‘:x = de = iz to get the

solution.
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Solve: (x> =y —z)p+2xyq—-2x2z =0.

The given Pde is (x* — y* —z*)p+2xyq—2xz =0
—>(x%? —y?2 —z)p+2xyq=2X2zZ
ThisisoftheformpP+g Q=R
Here, P = (x% — y% — z2)

Q=2Xxy

R=2xz
We observe that there are no |, m, n values satisfying
IP+mQ+nR=0
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The subsidiary equations are ox — Zy = f

L a x o dy = d=z

~ T (x2—y2—z2) 2x¥y  2x=z

(A) (B) )

From (B) and (C),
d v d z
2xy 2xz

v z

Integrating on both sides, logy = logz + log C,
—Log y- log z = log C;
—Log {E) = log C;

-

=
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Now consider x (A) + yv (B) +z (C) = (B)

ay xdx+vdyv+z dz
:}Exy o x(x?2—y2—z2)+v(2xy)+z(2x2)
— d v - xdx+vdyv+zdz
T2xy x3—xye—xz?4+2xye4+2x=z2
., dy  xdx+ydy+zdz
_’szy " x34xy24xz2
dy _ xdx+ydy+zdz
:}Exy T x(x2+y2+4z2)
. dy  xdx+ydy+zdz
2 v (xZ+yZ+2z2)
dy  Zxdx+2y dy+2z dz
—

v (xZ2+y2+z2)
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dy 2xdx+2ydy+ 2zdz

y (x2 +y?%+z2)
Integrating on both sides

Logy =log (x? + yv% + z2) + log C,
=>Logy - Ing (x?2 +y2+2z%)= log C,

=>Log ( T1y? +22} = log C5,
=( 3+y2+23}_{23
. The general solution is @ (£, - )=0.

z' x2+y24z2
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Practice problems

1.Form the PDE by eliminating arbitrary fuction from z = f (x* + y?)
2. Solve the PDE Y°Zp + X°zq = y°X
3.Solvethe PDE X(Y—2)p+VYV(X—2)g=2(X—Y)
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Non-Linear Partial Differential Equation

=)

A PDE which involves first order partial derivatives p and
g with degree higher than one and the products of p
and q is called a non-linear PDE

pP° + pg =z

There are six types of non-linear PDE of first order



Type-l: Equations of the type f(p,q)=0

Method of solution:

Let the required solution be z=ax+by+c

th ~ 2 _aanda=Z=b

en P =——-=4aan oy
substituiting in f(p,q)=0, we get
f(a,b)=0

From this we obtain b in terms of a. let b=@(a)

Then the the required solution be z=ax+@(a)y+c

21-06-2021 Dr.B.Krishnaveni

Aditya Engineering College(A)

PDVC



SIS FD,

il

U\\_@ugwrgmf
Problems

1.Solve P =1
Sol: Let the solution be

Aditya Engineering College(A)

z=aX+by+c— (1)
a,qzzzb
OX oy

substitute in the given equation, we get

ab—l_:>b:i

a
From (1),

Yy L . .
< = ax =+~ + C which is the required solution
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2.Solvethe PDE\p + g =1
Sol : The given Pde is \/p + /@ = 1----->(1)
This is of the form f( p,q )=0
Let the solutionisz=ax+ by + c-->(2)

Differentiating (2) w r to x, y respectively we get

dz 0z

ax—aand 5—13

—p=aandq=Db
From (1),\a+ Vb =1
=>+b=1—+a
=>b =(1 —+a)?
= The general solutionisz=ax + (1 —+a)?y + ¢ (from (2))

6/21/2021 Dr. B. Krishnaveni PDVC



ADITYA ENGINEERING COLLEGE(A)

3 .Solve the Pde p? + g% = 2p q

Sol: The given Pde is p2 + g% = 2p g-——-- >(1)
This is of the form f( p, q )=0

Let the solutionisz=ax+ by + c--->(2)

Differentiating (2) w rtox,y raespectively Vé/e get
z z

e = and Dy = b
—>p=aandqg=Db
From (1), a? + b? = 2ab
=>a? 4+ b2 —2ab=0
=> (a — b)?=0
=>a =b
~. The general solutionisz=ax +ay + c (from (2))
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4Solve P°+g° = nNnpg
Sol: Let the solution be z = ax + by +c — (1)
a,q = oz = Db
OX oy
substitute in the given equation, we get

a‘+b®=nab—=b® —nab+a“ =0— b =

From (1), — 2 [n=+Nn2z —aj
Z = ax + a_2y [N =~/ N2 — 4] + ¢ which is the required solution
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Type-Il: Equations of the type f(z,p,q)=0
Method of solution:

Let the required solution be z=f(x+ay)=f(u) i.e., u= x+ay
then b — 92 _dz ou _ dz _ | q_z_dzau_adz
P = 5x =~ du ox _ du oy du oy du

substituiting the values p and q in f(z,a,b)=0, we get

f(z, 92 292y _o
du du

The solution of this ordinary DE will give the solution of f(z,p,q)=0
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Solve the Pde Z = p q.

Sol: The given Pdeis Z =p q ----- =>(1)
This is of the form f (z, p, q)=0.

Let z = f( x + ay) is the solution of (1)
Let u= x + ay so thatz = f (u)

=z = az =
=== [:1 — D}{Iﬂda = H(ﬂ -+ {1(1))
dz  d= -E'..\,"— L dz
— Ax ar Tt - adu

— From (1), z—a( =

=z ciz .
T — —
1 [iu
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1 1
—Z zdz:ﬁdu

— Integrating on both sides,zlﬁ =—=Uu-+c

$2ﬁ=%+ﬂ

=2+ za = u + c\a

6/21/2021 Dr. B. Krishnaveni PDVC



ADITYA ENGINEERING COLLEGE(A)

2VZd = U+ cya

=> 2 +/za = x +ay + cy/a is the required complete integral.
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Solvethe Pdep(1+q)=qz
Sol: the given Pde is p(1 +q) =q z--->(1)
This is of the form f (z, p, q)=0.
Let z = f( x + ay) is the solution of (1)
Let u= x + ay so that z = f (u)

dz dz dz dz
= o = E(l + D:}{Iﬂda = E{ﬂ + a(1))
dz dz
= p= Handq =a—
dz dz dz
— From (1),5( 1+ HE}: a——7z

dz
::-(l—I—{IE)— az

6/21/2021 Dr. B. Krishnaveni PDVC



J\\_J‘Jllwr;JA‘é

uuuuuuuuuuuuuuuuuuuuu

6/21/2021

ADITYA ENGINEERING COLLEGE(A)

(1+a§—z):az

adz
—a—=az -1
e

dz _ﬂ'u

az—1  a
— Integrating on both sides, we get

log(az—1 u
=== _Z4¢
ca a

— Log (az-1)=u +c

— Log (az-1)=x +ay +c is
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Solve the Pde 9 (p? z + ¢%)=4

Sol: The given Pde is 9 ( p? z + g?)=4---->(1)
This is of the form f (z, p, q)=0.

Let z = f( x + ay) is the solution of (1)

Let u= x + ay so thatz = f (u)

dz dz adz dz=
az az
— p= Eandq = a—

= From (1), 9 {(52)%z + a? (552} =4

::.-{(— 27 + a“ ( 2} 4/9
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= v
((E2)22 + a? (£)2}=4/9
N 23 3
_.;-(du} fz 4+ a<} = =
X dz. - L <4
_‘?(du} a(z+ a2)
oz 2
— _

T du 3Ivz+al
— 3z + a2 dz = 2 du

— Integrating on both sides,

=
=
3 {:z+-|:1 }2

v = u + cC

=
—=2(z4+a?)z=x4+ay +c

ADITYA ENGINEERING COLLEGE(A)
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Problems

Solve P°+ pg= z°

Sol: The equation is in the form of f(z,p,q)=0
Let z=f (u) where u=x+ay

dz dz
_ —— a

- P du ~ “du

substitute p and q values in the given equation , we get

dZ 2 dz 2 2
—) +a(—)° =z
535° 55°
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J@ﬁ%_JA

— (1 + a)((‘;'—i)2 —

. dz Z
du J14+ a
dz du

> — =

ya J1+ a
on integrating, we get

X + ay

The required solution is log z =
a J J1+ a

- C
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Solve z = p°+qg~°
Sol: The equation is in the form of f(z,p,q)=0
Let z=f(u) where u=x+ay

dz dz
_ —— a

- P du ~ “du

substitute p and q values in the given equation , we get

dz > > dz - > Ez
Z:(E) +a (E) =(@A+a )(du)
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:}—_\/
1+ a“

. dz du
~ Z V1+ a?

on integrating, we get

—> 2~/ Z = U - C
V14 aZ
. : : - X + ay
The required solution is 2V z = - C

V1 + a?
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Type-lll: Equations of the form T (X, p) = g(y.qd)
Method of solution: Assume f (X, p) =g(y.q) =Kk
solving for p and g, we get

p=F(x,k),q=G(y, k)

since z is a function of x and y, we have

dz = Edx—kzdy = pdx +qgdy = F (X, k)dx + G(y, k)dy
OX oy

on integrating
z = J’ F (X, k)dx+J‘G(y, K)dy + b
Which is the required solution
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Problems

1.Solve P+ =sInX+siny
Sol: Given, P+ =sInX+siny
— p—SIin X =sIiny —(Q

Assume,
p—sinX=sIiny—g=Kk

S.p=sinxXx+k,g=siny —Kk

we have,
dz == pdx + qdy
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Substituting p and g values, we get

Aditya Engineering College(A)

dz = (sin X+ k)dx + (sin y — k)dy
on integrating, we get
Z=—COSX+kx—cosy—ky+c

— 7z =—(CosX+cosy)+k(x—y)+cC

which is the required solution

21-06-2021 Dr.B.Krishnaveni PDVC



ADITYA ENGINEERING COLLEGE(A)

J\\_J‘Jllwr;JA‘é

uuuuuuuuuuuuuuuuuuuuu

.SolvethePdep+q=x+y

Sol; The given Pdeisp+qgq=x+y ----- >(1)
Thisis of theformf(x,p)=g(v,q)

From (1),

let p-x = y-q = K (say)
=>p=K+xandq=-K + y ------ >(2)

We know that

dz=pdx + qdy

=>dz=(K+x)dx+ (-K+y)dy (from (2))
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dz=(K+x)dx+ (-K+y)dy
Integrating on both sides,

we get
2

2
Z=Kx+ x? —Ky+ 3,.-? + C is the general solution.
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Solve the Pde p? —x = g% — y

Sol: The given Pdeisp? —x = g2 —y ——— (1)
Thisisoftheformf(x, p)=g (v, q)

From (1),

p? —x = q° —y=K(say)
=>p?=K+xandg?=K+y

=>p = (K+x)zand q = (K +y )z ---->(2)
We havedz = p dx + q dy

=>dz=(K+x)zdx+ (K+y)zdy
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dz=(K+x)z dx+ (K +y)z dy
Integrating on both sides,
We get
3 3
7 — (K+3x )z 4+ &Kty )z +C

3

2 2

(or)

3 2 3 3
;z=(K+x)z+(K+y)2+;C
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.Solve the Pde = 4+ £ = 1
e q
Sol: The given Pde is § + % =1 -——->(1)
This is of the form f ( x, p)= g(v ., Q)
From (1),
X _—1-
- 1 » K (say)
—X = Kandl— £ =K
P q
—==pand 1 — K ==
K )
— = = p and = e ——->(2)
x P 9 = Tk
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We know that
dz = p dx + q dy

—dz= E dx +—H dy
— Integrating on both sides,
We get
x* y2 . . .
Z= + + C is the required solution.

2K 2(1—K)
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Type-IV(Clairaut’s form): Equations of the form z=px+qy+f(p,q)
Method of solution:

Let the required solution be z=ax+by+c

oz oz
= —— = = —=0Db
then p > & and d oy
substituiting in p=a and g=b in the given equation, we get
z=ax+by+f(a,b)
which is the required solution
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Problems
1.Solve z = pxX+ qy + p°qg~°
Sol:Given,

z=px+qy+ p°qg* — @

It is in the form of z=px+qy+f(p,q)

Let the solution be z = ax + by +c — (2)
O OZ

_  — :—:b

OX oYy
substitute in (1), we get

z = ax + by + a®b”
which is the required solution
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Problems
2.Solve pgz = p*(gx+ p*)+qg*(py +g*)
Sol:Given,

paz = p*(gx + p*) +qg*(py +g°)
pz) ,

2

aZp(y + )
P

—> pgz = pq(x-

2
—> zZz = p(X - p):

2
acy + )
P

3 3

— 72— (px+agy)+P—+ 9 S @
a p

21-06-2021 Dr.B.Krishnaveni
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It is in the form of z=px+qy+f(p,q)

Aditya Engineering College(A)

Let the solution be z = ax +~ by + c — (2)

OX ’ oy
substitute in (1), we get
3 3
a b
z = (ax+by) 4+ 5 |

which is the required solution
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Type-V: Equations of the type f (X" p, y"q) = 0and f(x"p,y"q,z) =0
Method of solution:

The above form can be transformed to f(P,Q)=0 or f(P,Q,z)=0 by
following substitution

case (i): when m=1and n =1
put X = x"", Y = y' ", then

oz oz oOX m oz
= —— = = P(1—mM)X —
< 5xX ox ( ) where P Sxc

— X"p=PA—m)

P

21-06-2021 Dr.B.Krishnaveni PDVC
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oz OY oz

= = A =Q@—nNn)Yy " where Q= oY

— y'q=0Q@0—n)
Then the given equation reduces to f(P,Q)=0 or f(P,Q,z)=0

Case (ii): when m=1 and n=1

put X=logx and Y=logy. Then
0Oz oz oX 1 oz

P= 357 X ox < P where X

Similarly, qy = Q
Then the given equation reduces to f(P,Q)=0 or f(P,Q,z)=0
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Problems
1.Solve Xp+yg=1

Aditya Engineering College(A)

Sol:Given,
xp+yq=1— (1)
This is in the formof f (XM p,y"q) =0
Here m=1 and n=1

Put X=logx and Y=logy

now, p:aZ: oz oOX :Pi:pXZP
OX oX OX X

oz oz OY 1
_ — = — _— —
9=y ~ oy ox Q y qy = Q
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_NID|TTY A
Substituting in (1), we get

P+Q=1— (2)
Let z=@ (u) where u=X+aY be the solution of (2)
Then

o _ dz, _ dz
du du
From (2), 4
! dz 1
—@O+a)=1— — =
du( ) — du 1+ a
— dz = 1 du
+ a

21-06-2021 Dr.B.Krishnaveni
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J\\lel‘lr_J/\_
On integrating, we get

1
Z = Uu-+ cC
1+ a

1+ a

Hence the general solution is

1
Zz = (logx+alogy) +c
1+ a
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Problems i i
2.Solve X | Y _ Z
. P q
Sol:Given, 2 y?2
5 | . =z=(X’p) T +(yqQ)t=z—> @D

This is in the formof f(xX"p,y"q,z) =0
Here m=-2 and n=-2
Put X _ Xl—m _ Xl—(—2) _ X3 &Y _ yl—m _ yl—(—Z) _ y3

now, _ 92 _ 9Z OX _ pbay2 . x2p— 3P
OX oX oOX

oz oz OY > >
9=2, = v ox Q3y a Q
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_NID|TTY A

Substituting in (1), we get

BP) " +(@BQ) =z —>(2)

It is in the form of f(z,P,Q)=0

Let z=f(u) where u=X+aY be the solution of (2)

dz dz
P =—, — a—
Then p Q au
dz . . dz . . :>1dz= 1dz:Z
. Llau4,.1y_ .

3 dz a
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Z a—+1

— = u-—+ C

2 3a
2

— Z_ = a_l_l(X +aY )+ cC
2 3a

Hence the general solution is

z° a+1

— = x> +ay’®) +c
> 35 ¢ A
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Type-VI: Equations of the type T (X, Pz") = g(y.qz")
Method of solution:

The above form can be transformed to any of the three forms of by
following substitution

put Z =z"" if n=—1
and Z= logz if n=-1
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Problems
1.Solve (X + zp)° +(y+zq)° =1
Sol:Given equation can be written as
(X+2zp)* =1—(y +zqd)* — (D)
This is in the form of f (x,z"p) = g(y.z"q)
Here n=1
Put Z =z""t =zt = 22

now, P_@Z :aZ 82222-p

OX oOzZ OX

oZ  oZ oz

Q oY oz oy
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_ND|FY A
Substituting in (1), we get

P > _ Q. 2 _ a2
(E+X) =1 (2 FYy) =a“(say)
P 2 2 Q, 2 2
(?_I_X) = a“,l (2 V) =a

P=2(a—x),Q =2[V1—a? — vy]
We know that,

dZ = Pdx + Qdy

dZ = 2(a — x)dx + 2[/1— a? — y]dy

21-06-2021 Dr.B.Krishnaveni PDVC
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?a <
_NID|TTY A

On integrating, we get

2 2

Z — 2(ax Xz) -2[V1—azy — X 1+c

Hence the general solution is

z2 = 2ax — x2 +2y~J1l—a? —y? +c

21-06-2021 Dr.B.Krishnaveni PDVC
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ADITYA ENGINEERING COLLEGE(A)

NON-LINEAR EQUATION SOLUTION
f(p,q)=0 Z=ax+by+c
(p=aandg=b)

EEEEEEEEEEEEEEEEEEEEEEE

Type2 f(z,p,q)=0 =0 (x+ay)
Type4 I=px+qy+f(pq) I=ax+by+f(a,b)
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g’fx Dﬁ%g D Aditya Engineering College(A)
i _ENLIGHTENS THE NESCIENCE

Practice problems

1. Solve the PDE z° =1+ p° +Q°
2 2

2.Solvethe PDE P~ —Q° =1

3. Solve the PDE P(1+ Q) = Qz

4.Solvethe PDE Pg =P +(
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Practice problems

5. Solve the PDE z = pX + QY ++/ P>+ q° +1

6.50lvethe PDE g° — P =Y — X

P g
7.Solvethe PDE —5 +—F = 2
X y

8. Solve the PDE z°(pP® +Qg°) = X* + Yy~

9. Solve the PDE z(p°—q°)=x—Yy

21-06-2021 Dr.B.Krishnaveni
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Homogenous Linear PDE with constant coefficients

An equation of the form

o"z o"z 0"z 0"z
a + a + a S T + a = F (X, —> (1
° oxn tox" oy % ox" 2oy’ " oy" 06 y) = (@)
Where &5, a,,a,,..... , &nare constants and F(x,y) is a function in xand y is

called Homogenous Linear PDE with constant coefficients of order n.

Write © _ and o _ D’ then (1) can be written as
OX oy

(a, D" +a,D"'D’'+a,D"°D’”? +........ +a D)z =F(x,y) — (2)

— f(D,D)z=F(X,yY) — (2)



;%‘5" &@&%%%%@
,90 <
TADIAFY A
] ENLIGHTENS THE NESCIENCE

Solution of Homogenous Linear PDE with constant coefficients

Aditya Engineering College(A)

The complete solution is given by

z=complementary function(C.F)+ Particular integral(P.1)

Where (a)complementary function(C.F) is the solution of the equation
f(D,D)z=0

(b) Particular integral(P.l) is the particular solution of f(D,D")z = F(X, YY)

ie., 1
f(D.Dy Y




Aditya Engineering College (A)

L)
ENLIGHYENS THE N

ORKING PROCEDURE TO SOLVE THE EQUATION

n
$+ &r"a"’.‘zay +..+ k" ;; = F(x, y).
Its symbolic form is (D" + kD" D'+ ... + k, D)z = Flx, y)
or briefly f(D,D')z = Flx, y)
I To find the C.F. by .
mﬁtet}zeAE. by swglocng DY orndd D By 1.
Le, m" + k,m"™ ' + .. + k, = 0 and solve it for m.
(ii) Write the C.F. as follows

PDVC

Dr.B.Krishnaveni Monday, June 21, 2021



Aditya Engineering College (A)

To Find Particular Integral
Consider the symbolic form of the equation as

fD, D)z= F(x, ) (1)
For this, Particular Integral (P.I)= f(Dl, D) F(x,y) (2
Case I.: When F(x, y) = e *
— 1 +by _ 1 +b
Pl = f(D,D')eaX Y = f(a,b)eax Y. fla, b) #0.

(i.e,, replace D by a, D' by b)

PDVC Monday, June 21, 2021

Dr.B.Krishnaveni



Case II: When F(x, y) = sin(ax + by) or cos(ax + by),

Pl = f(Dl, D) sin (ax + by)

1

Aditya Engineering College (A)

— f(_ 32,— ab,— bz) SiIl(&X+ by), Pl‘OVidf'l'd ﬂ—az, —ab, —bz) # 0.

(ie., replace D? = - @, D? -b?, DD’= - ab)

PDVC Dr.B.Krishnaveni

Monday, June 21, 2021



ADITYA ENGINEERING COLLEGE(A)

Casel7ii) When F(x. y) = " .vn

PL = f(Dl D’) xM .‘,n _ [f(D, D,)]—l xm yn

Expand| £ (D, D’)]’l in ascending powers of D or D’ as follows and then operate o

Xy term by term.

(@) If m =n . then expand in either power of D or D’.

(b) If m <n , then expand in power of D i.e., DD ;
Lo . & D’
(¢) If m>n, then expand in power of D’ i.e., =

Step 6 @ The complete solution of the given equationis z=C.F.+P. L
ote = If in a homogeneous equation the R.H.S is zero then the C.F. gives the complete
dlution. In other words, if R. H. S. is zero, we need not find P. 1.
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Problems
o3u o3u o3u o3u

+ 2

_ _ 0
ox3 OX*8y  Oxoy-* oy*

1.Solve

Sol: The given equation can be written as 5 5
3 27 2 13N,y = D — = D’
(D°+2D“D DD 2D")u =0 where O oy

put D=m and D’ = 1then the auxiliary equation is given
fMD)=m*+2m"—m—-2=0=>M-21D(M+1)(Mm+2)=0
—m=-11,—2
u= f,(y —x)+ f,(y + x) + f5(y —2x)
which is the required solution
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4 4
2.5olve 2 f—a Z-0
OX oy
Sol: The given equation can be written as
(D4_Dr4)Z:O Whr i:DEID'
€€ ox 7 oy

put D=m and D’ = 1then the auxiliary equation is given
f(mMl)=m"—-1=0=((M"—-1)(M* +1) =0
— m=-—11—1,I
z=Ff (y+xX)+ f,(y—xX)+ fo(y+1x)+ f,(y —1ix)
which is the required solution
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832_3 O0°z 2 037 037

-+ — =0
ox> OX> oy oxoy® oy’

Sol: The given equation can be written as 5 5
(D?—3D?D’+3DD"? —D"?)z=0 where 5y = D, 5 = P’
put D=m and D’ = 1then the auxiliary equation is given
f(M1)=m>—-3Mm"+3mM—-1=0=((mM—-1)°>=0
— m=2111
z=f(y+x)+xf,(y+x)+x*f,(y+ Xx)
which is the required solution
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4.Solve (D® —3D?’D’+4D"®)z =e*?Y

Sol: The given equation is 5 5
(D?—3D?D’+4D"?)z = where 7 = D, Z, =P’
C.F: put D=m and D’ = 1 then the auxiliary equation is given
f(mMl)=m>-3mM"+4=0=(M—-2)*’(M+1)=0
—m=2,2,—1

C.F=1f(y+2x)+xt,(y+2x)+ f,(y—X)
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1
Now P.l = ex 2y
(D°® —3D°D’'+4D"®)

1 X+2y

— 1 ex+2y — iex+2y
1-6+32 27

Hence the complete solution is given by

X+2y

z=C.F+P.Il = f(y+2x)+xf,(y+2X)+ f3(y—x)+2—17e

21-06-2021 Dr.B.Krishnaveni PDVC



Aditya Engineering College(A)

O°z -
— = SIN XCOS2Yy
OXoY

Sol: The given equation can be written as 5 5
(D? —DD")z =sinxcos2y where 5 = P, &, = P
C.F: put D=m and D’ = 1 then the auxiliary equation is given
f(mMD=mM"—mMm=0=m(m—-1)=0
— mn=0,1

C.F=1(y)+ f,(y +Xx)
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Now P.l = (D2 — DD SIN XCOSZY =

(D2 _ DD (; 2SN XCOS2YVY)

! 1
2 (D? — DD)

1 : 1 :
E[—l— —2) sSin(X+2y) + 1 sin(x —2y)]

[sIN(X+2Yy) +sINn(X —2Vy)]

= %[sin(x +2Y) —%sin(x —2y)] = %sin(x +2Y) —%sin(x —2VY)

Hence the complete solution is given by
z=C.F+P.l = f(y)+ f,(y+ X)

+ %sin(x +2VY) —%sin(x —2VY)
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6.SO|VG (D3 — 7D’2 e 6D’3)Z — Sin(x —+ 2y) —+ eZX+y

Sol: The given equation is
(D® —7D"” —6D"®)z =sin(x+2y) + e**"Y

C.F: put D=m and D’ = 1 then the auxiliary equation is given

f(mMD=mM*"—7"TMmM-6=0=>mM+1D(M-3)(M+2)=0

—m=-1,3,—2

C.F = ¢1(y_ X) +¢2(y—|—3x) +¢3(y_2X)
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1
Now P. I. ~ D3—7DD’2—6D'3

[sin (x+2y)+e> "7

L sin (x+2y)+ .
D> -7DD’* —6D

Lx+y

D? —7DD? —¢p”

= . 5 — sin (x+2y)+ 5 L JPeEsS
D.D?>-7D.D’*> —6D’.D Q2) -7 Q)Q)? -6

= ! ; sin (x+2y)+ : e2*+y
D (-1)-7D (—4)—-6D'(-4) 8-14-6
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[Multiplyin

- P I

. The complete solution is

y=C.F.+P. 1 =

21-06-2021

Aditya Engineering College(A)

1

sin (x+2y)—ie2"+)’
— D 4+ 28D + 24D 12
= > S— sin (x+2y)_._1_e2X+y
3 (O + 8D 12
_ oD —8D") ——sin x4+ 23y — L o2x+>
3 (81D2 —64D"?) 12

£ numerator and denominator with conjugate terim (9D —8D7) E |
OD—8D ) sin (x+2y)—Le2x+y
3[81 (1) —64 (—)]

12

A O — 8D ) sin (x+2y)—._1 e2>x+y

525 12
{3111 (x+23D}y—8.— {81n (x + 2y)}X— — T
525
1 2x+y
525 A2
1 2x+y
—— cos (x+2y)——e
525 ¢ A T
1 2x+Yy

— + 2 — e
75 cos (= ¥ — 35

1 1 23Xy
D1 (Y — X))+ P (y —2x)+ d3(Yy +3x)———7—§—cos(x+2y)——1—ie

Dr.B.Krishnaveni
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7.50lve (D? —2DD")z = e** + x3%y

Sol: The given equation is
(D° —2DD")z =e** + x°y

C.F: put D=m and D’ = 1 then the auxiliary equation is given

fmMD=mMm"—-2m=0=m(m—-2)=0

—m = 0,2

C.F=4((y)+&(y+2X)
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1 3 1 2 1
I. = (e + x = e* 3
Now P D?* —2DD’ ) D?* —2DD’ D2 —2DpD"
2x
e 1 2x r—1
=2-200) 2D’ y =S+ 12& _ZDX <y
D*|1- 4 D D
D |
e** 1 2D 4AD™? 3
= + 1+ - +.... |\ X"y
4 D? D D2
—_ e X —— — X
4 D2 D y | Y y

|
+

2x
¢ . [x3y+%.%(x3y)‘x
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= o J
2x
e 1 F3 3 er
_ezx+ 1 ['x3y dx]+ 2 [I 3dx e2x 1 x4 2 x4
4 DL sz]—4+oy4 D%\ 4
2x x
e y 4 2 1 4 e y x 1 1(x
= —+ = dx+—.— dcxc =—+~—| — |+—.—| —
2 J * a a| 5| 2'D| s
2% D

I
IN
N
=
ja—

=)

== -+ +

. The complete solution of the equation is
+ 2 )+ezx +x5y +x6
)’A=C-F.+P-I-=¢1()’)+¢2()’ x m >0 60
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Let f(D,D") be the homogeneous function of degree n.
If on replacing D by 'q' and D’ by 'p' in f(D,D") , we get f(a,b) =0, then in this case
Differentiate f (D, D’) partially w.r.t. D and multiply by x.
1

ie.,P. 1 = T(TD,)F(ax+by), where f(a,b) =0
=x.— 1 F(ax+by) or Y3 ! , F(ax+by)
a_D[ f(D,D"] 3D [f(D,D)]
If f(a,b) =0 again, then
P. I =x° = 1 F(ax+ by)
87)7[f(D’D,)]

If f(a,b)# 0 then stop.
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1.Solve (4r +12s+9t)z = >V

2 2 2
Sol: we have pzﬂ,qzz,rzaz,sz O°Z o972
OX OX OX? OXOY oy *
o°z o°z 9 oz _ 03x-2y

' ion is 4 12

The given equation is ~~Z EVEY + oy
— (4D° +12DD’+9D"?)z = e *Y

C.F: put D=m and D’ = 1 then the auxiliary equation is given

f(M1) =4m* +12m+9=0= (2m+3)* =0

~3 -3
— M=
3

3
CF=f — — X) + xf — =X
Ly > ) >y > )
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1
Now P.l = e> %Y
(4D% +12DD’ +9D"?)

l 3xXx—-2y
e e —_ ’:—
36— 72 + 36 [Put D=3, D"=-2 ]
— ie3x—2y
o - case of failure
. P.l = X 1 e3x 2y
i(4D2 +12DD’'+9D"?)
oD
— X 1 e3x—2y — X 1 e3x—2y — XieSX—Zy

(8D +12D") (24 — 24)

(Cgse of failure)
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;;7'/}\ S q
" AID ||g1 FY A

Hence the complete solution is given by

2
z=C.F+P.1 = fl(y—gx)+xfz(y—gx)+x7e3x—2y
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5.Solve (D® + D°D’'— DD’”* — D"®)z = 3sin(x + Vy)

Sol: The given equation is
(D® + D2D’'— DD”? — D"®)z = 3sin(x + V)

C.F: put D=m and D’ = 1 then the auxiliary equation is given

fmMD=mM>"+mM" —m-1=0=mM"—-1)(Mm+1) =0
— mnM=-11-1=—=m=-1,-11

C.F=1f(y—x)+xt,(y—x)+ f,(y+ Xx)

21-06-2021 Dr.B.Krishnaveni PDVC



Aditya Engineering College(A)

Now P.I = s 3sin(x + y)
ow - (D3+ DZDI_ DDI_ DI3)
1 i
— 3sin(x + D°=-1D"=-1

—D-D'+D+ D’ ( y) [Put ]
1 1 .

=5 3SIN(X+Y) ———_case of failure

~“P.l =X 5 1 3sin(X + Yy)
— (D®*+D°D’'— DD’ — D)
oD
1 i
= X 3sin(X + Yy)

3D +2DD’'— D’
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U\\_@ugvg/\/\ :

’

1 )
— x 3D+ 2(—D) — (D 3sin(X + vy)

X ] — 3X .
:_3_2+13sm(x+ y) = sin(X + y)

Hence the complete solution is given by

z=C.F+P.l = f(y—XxX)+xf,(y—X)+ f3(y+x)—??TXsin(x—|— V)
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’

General method

Case IV: When F(x, y) is any function of x and y.

Fx,y) = 1

Pl = )
f(D, D) D-mD)D-mD) .. *Y

and D—lmD’ Fx,y) = [ F(x, c — mx)dx, where ¢ = y+ mx.
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SADTYA

d*z 0’z , ,0%°z _
Solve FY e 3x0y + 3? = /x+3y.

Solution: The given equation which is an homogenous linear partial differential equation of
2nd order can be written in its symbolic form as

(D? - 4DD' + 3D"%)z = (x + 3y)1/2 \
Its auxiliary equation is as ¢ fq;\_m_c_cz_ D by <o D b% ‘)
(m* -4m+3)=0 or m=1,3 |
whence CF. =¢,(y+ x) + ¢,(y + 3x) ...(2)
For Particular Integral,

Pl—_ 1
f(D,D)

_ 1 1/2
_(D—3D’)D:[ (x+3y)/ *dx

...(1)

1

1/2
D-D)D-30) ¥

Fix,y) =

) 1
= (D_13D')-[[X+ 3((:1 - )]E dx since y+ x=¢; for m=1

PDVC Dr.B.Krishnaveni Monday, June 21, 2021
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-3l

_%(X+ 3y)3/2], On replacing ¢, = y + x

- _% -[ (x+3y)* 2dx

D-3Dr

- —%J‘(x+ 3¢ —9x%dx, as(y+3x)=c, for m=3

-

PDVC Dr.B.Krishnaveni Monday, June 21, 2021



3 _gx2
8 X 5
5/2 5/2
_ B¢ ng) = (X+63[-]V) , replacing ¢,=y+ 3x
Here, complete solution
5/2
z=0;(y+ x) + 0,(y + 3x) + (X+630

Solve (D? - DD' - 2D?%)z = (y - 1)¢é~.

Solution: Corresponding A.E. is
mM-m-2)=0 ie, (m-2)m+1)=0

or m=2,-1
whence CF. = ¢i(y + 2x) + 0o(y - x)
Now P.l= L 1) X

D DD —207 V'~
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FRRO B

{nman)

B 1
- (D-2D)(D+ D)

(y—-1) ¢

" (D- zm .[(y e dx

Corresponding to the factor D+ D', y= ¢ + x
1

N P.I.:(D_ZD,).(61+X—1)ede
= L .((cl—l)e"+xe") dx
(D-2D))+
=5 2D (g —DeX+(x—1) e ]
= 12[)’ | (y—2) e"] replacing, ¢; = (y - x)
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P.I= j (y—2) e* dx

D-2D

Expressing (y - 2) in terms of x as y + 2x = ¢, corresponding to the factor (D - 2D’)
- PL=[(c-2x-2)e"dx=[((c, -2 - 2x)e'dx

=(g-2) e&-2(x-1) ¢

P.I. = ye* on replacing ¢, by (y + 2x)
Therefore complete solution z= 0,(y + 2x) + ¢,(y — x) + ye*.

Solve (r + s - 6t) = ycosx.

Solution: The given equation can be written as
(D? + DD' - 6D %)z = ycosx
Corresponding A.E. is (m* + m - 6) = 0
= WMm+3)y(m-2)=0 ie, m=-3,+2
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C.E. = ¢y(y - 3x) + do(y + 2x)
1

Pl = COSX
Now D’ + DD —6D?”
= 1 COSX
(D+3D)(D—-2D)°
(D+ SD’) J. ycos x dx
1
= (D+3D’)-[(C1 —2x)cosx dx Here y + 2x = ¢,
=D 13D’) [( —2x)sinx—2cosx| replace ¢, = y + 2x
+

- = D +13D’) (ysinx —2cosx)
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J ysin x dx —I 2cos x dx
Doary D+ 3D
+

= J (¢, +3x)sinxdx — 2 j cosxdx y-3x=¢

D+3D D+3D

— (¢, + 3x)cosx — IS (—cosx) dx — ZIcosx dx

P.I.=—-ycosx+ Icosx dx=—ycosx+sinx, replacing (¢, + 3x) by y

z= 0,(y - 3x) + ¢,(y + 2x) — ycosx + sinx as complete solution.
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Solution: The symbolic form of the above equation is
(4D? - ADD' + D)z = 16log (x + 2y)
Corresponding A.E. is 4m?> -4m+ 1 =0

ie., 2m-1)2=0 or m=l,l
2 2
CF. = ¢;2y+ x) + x0,2y + x)
P.I= L 16log(x+2y)
4(D—1D')
2
1
=4. 1 IIOgZCdX as(2y+x)=c
D_EU
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=4. 11 -xlog (x+ 2y)
D—ED'

=4-[xlog2c dx
=4-§-10g26

= 2x* log 2¢(x + 2y)

Hence the complete solution,

z=O,(y + 2x) + x0,(y + 2x) + 2x*log (x + 2y).
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